The UNNS Lagrangian Protocol (ULP): Action Principles for Recursive Gauge Fields

UNNS Research Notes

September 24, 2025

Abstract

Extending the UNNS Gauge Protocol (UGP), we introduce the *UNNS Lagrangian Protocol* (ULP). This framework defines recursive action principles for UNNS gauge fields, derives Euler–Lagrange recursion equations, and parallels Maxwell and Yang–Mills theories. The ULP establishes UNNS as a variational substrate, opening simulation and quantization pathways.

Contents

1	Motivation	1
2	Recursive Action Functional	2
3	Euler-Lagrange Recursion Equations	2
4	Examples4.1 Abelian Case: Recursive Maxwell	
5	Diagrammatic Overview	3
6	Applications 6.1 Mathematics 6.2 Physics 6.3 Computation	3
7	Conclusion	3

1 Motivation

The Gauge Protocol introduced UNNS connections and curvature, but lacked a principle for dynamics. The ULP provides this by defining an *action functional*, from which recursive field equations follow by variation. This aligns UNNS with physical field theory, where Lagrangians govern evolution.

2 Recursive Action Functional

Definition 2.1 (UNNS Action). Let \mathcal{F} be the recursion curvature. The UNNS action is

$$S[A] = \int \left(\frac{1}{2}\langle \mathcal{F}, \mathcal{F} \rangle + V(A)\right) d\mu,$$

where $\langle \cdot, \cdot \rangle$ is an inner product on operators, V(A) a potential term, and $d\mu$ a recursive measure.

Remark 2.2. For abelian UNNS, V(A) = 0 gives a Maxwell-type action. For non-abelian UNNS, interaction terms arise, paralleling Yang-Mills.

3 Euler-Lagrange Recursion Equations

Theorem 3.1 (Recursive Euler–Lagrange Equations). Variation of the action with respect to A yields

 $D^*\mathcal{F} + \frac{\partial V}{\partial \mathcal{A}} = 0,$

where D^* is the adjoint recursion derivative.

Proof. Standard variational calculus extended to recursion:

$$\delta S = \int \langle \delta \mathcal{A}, D^* \mathcal{F} + \partial V / \partial \mathcal{A} \rangle d\mu,$$

implying the stated condition.

4 Examples

4.1 Abelian Case: Recursive Maxwell

$$S = \int \frac{1}{2} \mathcal{F}^2 \, d\mu,$$

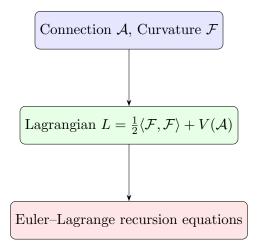
yielding recursion equations analogous to $\nabla \cdot E = 0$.

4.2 Non-Abelian Case: Recursive Yang-Mills

$$S = \int \left(\frac{1}{2}\mathcal{F}^2 + \lambda \operatorname{Tr}(\mathcal{A}^4)\right) d\mu,$$

yielding non-linear recursion dynamics.

5 Diagrammatic Overview



6 Applications

6.1 Mathematics

- Defines recursive variational calculus.
- Links to discrete action principles in combinatorics.

6.2 Physics

- Provides a recursive analogue of field Lagrangians.
- Suggests pathways to recursive quantum field theories.

6.3 Computation

- Enables UNNS simulation via variational solvers.
- Applications in optimization and machine learning.

7 Conclusion

The UNNS Lagrangian Protocol equips recursion with dynamics via action principles. It aligns UNNS with physics paradigms, bridging discrete recursion with continuous field theories, and opening routes toward quantization.